Co-Optimized Multi-Mode Light-Duty Vehicle Engine

Annual Merit Review – 2020

PI: Philip Zoldak

Hyundai-Kia America Technical Center Inc.

June 4, 2020

Project ID: ft087

Award #: DE-EE0008478

OVERVIEW

Timeline

Start date: 1/2/2019End date: 5/30/2022

• 30% Complete

Budget

- Total Funding for 3 years
- \$2.17M Federal-Share
- \$2.78M Cost-Share (56%)
- \$4.95M Total Project Budget
- Funding for FY19: \$944,108
- Funds Anticipated FY20: \$817,802

Project Partners

- US Dept of Energy-VTO
- Michigan Tech University

Michigan Tech

- Phillips 66
- Project Lead: Hyundai

Barriers

- Co-optimizing novel gasoline blendstock fuel specification with GCI combustion system needed to maximize efficiency potential
- Gasoline CI fundamentals are not well understood. Improved fuel properties and chemistry models are needed to develop combustion system
- Advanced Combustion System hardware are needed to cover multi-mode operation range.
- Multi-mode engine operation requires mode switching strategy thus advanced controller will require strategy with 3 modes

RELEVANCE

- To meet 2025 VTO goals for <u>10% improved in vehicle fuel economy</u>, an advanced multi-mode (SI+GCI) combustion system is being co-optimized with gasoline fuel for LD vehicle.
- Using widely available gasoline blendstocks in the US, ensure US energy independence into the future. Can be blended with bio-renewable fuels (ie. E30)
- Challenges to apply GCI technology to LD passenger car engine.
 - Maintaining low-load reactivity to ensure stability.
 - Managing high load max pressure rise rates to < 8bar/deg over the range of
 - Meeting exhaust temp limits at peak power conditions
- Extensive CFD modeling needed:
 - Development of real fuel chemistry and fuel properties models are needed
 - improve GCI combustion fundamental understanding and for performance operation
 - Combustion system hardware procurement (HP DI Fuel sys., advanced boosting, etc)

Advanced engine controller required to do:

- multi-mode operation and mode switching.
- Prediction of in-cylinder conditions (temp, residuals) needed to ensure combustion robustness, prior to and during mode switch events.

Objectives:

 Hyundai to develop a co-optimized fuel and multi-mode SI + (GCI) engine combustion system that can achieve 15% vehicle fuel economy improvements.

MILESTONES

Month/Year	Description of Milestone	Status	R/Y/G
Aug 2019	M1.1 Technical Specification comprised of 0D boundary condition & analysis based on torque curve of proposed multi-mode capable eng	Complete	
December 2019	M1.2 CFD Model build. 3D model construction to conduct predictive multi-mode combustion & provide feedback to hardware design.	Complete	
June 2020	M1.3 Fuels formulation selection and justification of down-selected fuel for GCI testing, -Advanced CI Merit function	In-Process (Moving to Year 2)	
March 2020	M1.4 Steady-state "Mule" Engine testing of multi-mode and BSFC demo. LTC and GCI mid to high load are on target	Complete	
May 2020	M1.5 Go/No Go: High confidence multi-mode engine hardware able to meet program targets of 150hP and at least 15% in simulated FTP75 fuel economy over baseline.	On-Schedule	
December 2020	M2.1 Adaptive mode-switch controller setup & validated on hardwar e-in-the-loop bench.	Ahead of Schedule (Year 2 goal)	

Summary: Project was delayed 5 months due to contracts negotiations, but critical controls item from year 2 was pulled forward into Year 1 and used to control multi-cylinder GCI engine to meet 15% target. Overall, the project is well on track.

TECHNICAL APPROACH

- Specification multi-mode hardware to meet targets
 - Valve-train to drive residuals for SA-LTC
 - High Pressure Late <u>Direct-Injection</u> for GCI
 - Central Spark & Ignition system
 - Boost & EGR Systems to support above
- 3D combustion CFD model, study the Fuel Effects on GCI combustion modes (LTC & MCCI)
- Selection of fuel matrix & development of Advanced CI merit function.
- Advanced engine controller capable of executing combustion mode-switch
- Demonstration of GCI operation on multi-cylinder

Project Goal: 15% fuel economy improvement over SI engine baseline on a simulated FTP 75 cycle. Engine must also achieves 150hP and have a useable torque curve.

HYUNDAI Multi-Mode GCI

MULTI-MODE COMBUSTION SYSTEM ENABLERS

HYUNDAI 🥝

HYUNDAI MOTOR GROUP

TECHNICAL ACCOMPLISHMENTS AND PROGRESS Multi-Mode GCI

REAL FUEL MODELING

Michigan Tech

- 4 Fuels selected with RON of 63, 71, 80, & 90
- Fuel property experiments Dr. Yu Shi (Phillips 66)
- Real Fuel Surrogate Chem by Prof. Y. Ra (MTU)
- Prediction of ignition delay & distillation complete
- SAE Publication 2020-01-0784
 - "Real Fuel Modeling for Gasoline Compression Ignition Engine"

Predicted ignition delay

RON90 longer delays at low temps

NO.	KON 65	KON 30
NO.	(22 Component)	(25 Component)
1.	ic8h18	ic8h18
2.	c4h10	c4h10
3.	ic5h12	ic5h12
4.	ic6h14	ic6h14
5.	ic7h16	ic7h16
6.	toluene	toluene
7.	c9h20	ic9h12
8.	ic9h12	chx
9.	c10h22	nc5h12
10.	chx	nc7h16
11.	nc5h12	c6h6
12.	nc7h16	mch
13.	mch	c6h5c2h5
14.	c10h18	mcymene
15.	c8h18	nc6h14
16.	c6h5c2h5	c5h10
17.	mcymene	c6h12
18.	c11h16	cpt
19.	nc6h14	dmchx
20.	dmchx	ic10h22
21.	ic10h22	ic9h20
22.	ic9h20	ic5h10
23.	-	ic6h12
24.	-	ic7h14
25.	-	cychexene

RON63, Model

-RON71, Model

-RON80, Model

-RON90, Model

- RON63, measured
- RON71, measured
- RON80, measured
- × RON90, measured

Surface temperature

3D CFD COMBUSTION MODEL

- Engine Speed: 1500rpm
- Load: 13bar BMEP
- Conventional CI Bowl
- 6 hole vs 8 hole
- Strategy: MCCI exploration

MULTI-MODE GCI COMBUSTION SYSTEM

HYUNDAI DUAL CVVD+CVVT VALVETRAIN

HYUNDAI (()) Multi-Mode GCI

AIR SYSTEM (TURBOCHARGER SPECIFICATION)

- Garrett-Motion provided Variable Inlet Compressor (VIC) technology. Offers a wider flow range and higher press
 ure ratio, and significantly larger high efficiency island (79%) versus baseline turbo spec.
- Additionally the turbine exhaust gas temp limit was increased to 860degC.
- The map is well equipped to be able to handle flow requirements at high power and low flow high pressure point s for fuel economy and torque

MULTI-MODE GCI_01 ENGINE BUILD

Hyundai Multi-Mode GCI Gen 1 (GCI_01_B1)

- Pmax: 180bar
- Central DI, and bowl in piston design
- DI Fuel Pressure: 1000bar
- PFI injection system: 5bar
- 120mJ Spark Ignition System
- Dual Loop EGR (HP&LP)
- Dual Path Charge Air Heating and Cooling
- VGT Turbocharger (PR>3.0)
- Can explore GC I (PPCI/MCCI) & SI
- No DUAL CVVD+CVVT Valvetrain
 - Will be added to (GCI_02)

MULTI-CYLINDER ENGINE - SA LTC (HCCI) MODE

- Spark-assisted low temperature combustion (SA-LTC)
- Demonstrated at HATCI using 2L CVVD CR14
- Key Enabler: Dual (Int/Exh CVVD & CVVT) actuator setup.
- RON 91 E10 Gasoline Fuel was used.

versus SI mode

SI vs LTC Mode

2L Dual CVVD+CVVT

NVO Gas Exchange and Rapid **HCCI Pressure Rise**

Dual CVVD+CVVT enables NVO

HYUNDAI Multi-Mode GCI

MULTI-CYLINDER ENGINE - GCI MODE

BRAKE THERMAL EFFICIENCY BENCHMARKING

FTP Cycle Power Target

HATCI Multi-Mode GCI vs SI

Range 1500 to 3000 RPM Avg BTE gain Delta 17.5% (GCI v SI)

HATCI Multi-Mode GCI vs DCI

Range 1500 to 3000 RPM
Avg BTE gain Delta 2.0% (GCI v DCI)

- From1500 to 3000 rpm range, Multi-mode 2.2L GCI (SI, SA-LTC, GCI) modes resulted in a delta BTE improvement of 17.5% over the 2L SI baseline engine. Easily achieving 15% target for project
- Results compared to 2.2L diesel engine benchmark
- the 2.2L Multi-mode GCI resulted in a 2% improvement.
- Hyundai Multi-mode GCI is better than diesel!

VEHICLE FUEL ECONOMY SIMULATION

FTP Cycle

Duration: 1874 s; Distance: 11.04 miles, Avg Speed: 21.2 mph, Max Speed: 56.7 mph

Vehicle Targets:

OP1: FTP Cycle

15% Fuel Economy imp ULEV70 Tailpipe Out Cold-starts @ -20C

OP2: Rated Power

Specific Power: >150hP >15 bar BMEP at 4500 rpm

OP3: Torque Curve

Useable Torque Curve 12 to 20 bar BMEP 1500 to 3000 rpm

Target Vehicle:

Hyundai Tucson ULEV125 114,735 units/year total

Brak	e Th	nerm	nal E	Effic	ienc	cy M	lap '	→		ver i que C	
			<i></i>	3	Z	7	-				
20											
17				_(3)_			-	-			
15			-		43.4%	-	-		_6	<u> </u>	
12		_	-				-	-	2	<u>i</u>	
10			-			-			_	i	Legend
9			20			-	-	-		i	45%
8	-		GC	Mo	de		-	-		1	40%
6	-	/		-	-		-	-		1	35%
4	-	/ -	34.3%				S	I Мо	de	- 1	30%
4				S	A-LT	С					20%
2.5						-					2070
1 5	I Мо	de				-	_			j	10%
BMEP/RPM	1000	1200	1500	2000	2500	3000	3500	4000	4500	5000	BTE

HYUNDAI Multi-Mode GCI

Range	1500 to 3000 RPM
GCI Mode	Peak BTE 43.4%
SA-LTC Mode	Peak BTE 34.4%
	Tracking >150hP
Rated Power	@ 4500 rpm

- Multiple engine data sets combined. 1 BTE Map to predict Multi-mode result.
 - SI Mode (2L SI Baseline Data MY 2015 production)
 - SA-LTC mode (2L CVVD Engine 2019 test data)
 - GCI mode (2.2L GCI data 2020 test data)
- Resultant BTE map above will be used as input to the GTDrive Vehicle Fuel Economy Model and Compared with 2L SI Baseline
- Vehicle drive cycle using 1D GTDrive –to be completed.

RESPONSES TO PREVIOUS YEARS COMMENTS

No presentation in 2019

COLLABORATION AND COORDINATION WITH OTHERS

Organization	Role
Hyundai America Technical Center Inc.	Lead org, base engine, 1D simulation, en gine testing, combustion, controls & calibration E10 fuel testing
Michigan Technological University Michigan Tech	3D CFD Model build SCRE and S&CV chamber testing Advanced Control estimators Fuels & GCI study
Phillips 66	Fuel formulation development & research fuel supply
Garrett-Motion	Turbocharger supply
HMETC	DI Injector characterization & supply Validation
WM International Engineering	Multi-mode base controller development Cylinder pressure feedback system
Argonne National Lab	CI Merit function development

REMAINING TECHNICAL CHALLENGES & BARRIERS

Barriers:

- Managing Pressure Rise Rates < 8bar/deg at high loads ①
 Increased smoke as speed is increased ②
- Increased EGT as combustion duration increases with engine speed ③
- All require High ROI DI fuel injector and pump for gasoline fuel. Current pump has limitation of 740bar pressure before cavitation is excessive.

Challenges:

- Obtaining custom DI nozzle configurations
- Procuring 1000bar Gasoline pump that is production intent
- Completing the design and procurement of the Dual CVVD
 - + CVVT cylinder head with central mound DI and Spark
- GCI mode low load operation extension
- SA-LTC mode operating range extension
- Development of in-cylinder condition estimators
- Development of mode-switch procedure and algorithm to eliminate torque drops ⑤
- Determine Lean Nox aftertreatment assumptions

PROPOSED FUTURE RESEARCH

Objective: Low Load GCI Operating Range Extension

Test Planning	Timing
GCI_01_B1 Engine 1 st Fire	May 2020
GCI Low Load Extension/Tactics	July 2020
SA-LTC Exploration without CVVD	Aug 2020
SI mode to GCI Mode Switch	Sept 2020
GCI and Low RON Fuel	Finalize
GCI_02_B1 CVVD Engine 1st Fire	Finalize
SA-LTC Mode exploration	Next in plan
In-Cylinder Trapped Mass & Residuals estimator	Next in plan

From fuel properties we know combustion stability at low temperatures is poor for RON90 fuel

- Next phase of work will Investigate conventional tac tics to improve low load stability
- 2. Dual CVVD build will enable investigating hot residuals

SUMMARY

M1.1 Technical Specification completed, boundary conditions verified with 1D simulation. The combustion recipe proposed and multi-mode engine systems procurement under-way.

M1.2 3D CFD Model has been built. Ability to conduct predictive multi-mode injection & combustion & provide feedback to hardware design team. Chemical Mechanism developed for 4 RON fuels

M1.3 Fuels formulation selection and justification of down-selection for GCI testing in process.

-Advanced CI Merit function is delayed but will progress.

M1.4 Steady-state engine testing of multi-mode (SA-LTC & GCI) BSFC mid to high load demo.

M2.1 Engine Controls: critical year 2 controls task pulled head early into year 1.

have proven out rapid-proto ECU on dyno in both DCI and GCI modes.

M1.5 Go/No Go: High confidence hardware will meet program targets 150hP@4500rpm & 15% in simulat ed FTP75 fuel economy over baseline.

- Project is now tracking towards ~20bar BMEP, potentially up to 200hP @ 4500rpm.
- Achieved average of 17.5% BTE improvement over SI (1500 to 3000 rpm)

ACKNOWLEDGE MY PROJECT TEAM MEMBERS

HATCI-Lead Org Phil Zoldak (PI)

Mark Shirley

Dr. Shengrong Zhu

Dr. Antowan Zyada

Dr. Nahm Roh Joo Nicholas Fantin

Jeff Hollowell

Dave West	Instrumentation Tech
Randy Stram	Fabrication Tech
Garrett Solace	Build Tech
Mark Bourcier	Cycle Simulation Eng.
Mayuri Wagh	Fuels Engineer
Lisa Philip	Business POC
Lisa Lewis	Purchasing
Dr. KyungPyo Ha	Valvetrain Specialist
Stephan Revidat	Fuel Injection Specialist

Michigan Tech

Prof. Jeff Naber (Co-PI)
Prof. Youngchul Ra (Co-PI)

Dr. Jeremy Worm

Prof. Seong-Young Lee

Henry Schmidt

PhD Student-
PhD Student-Controls
Research Engineer-SCRE
Post Doc-1D Sim HCCI
Shop-SCRE Test
PhD
PhD
MS-1D Sim HCCI

Dr. Yu Shi

US DOE VTO

Ralph Nine Michael Ursic Kevin Stork Ken Howden Gurpreet Singh

Contact Phil Zoldak: pzoldak@hatci.com

Dr. Robert Wagner (ORNL)

TECHNICAL BACK-UP SLIDES

ENGINE PERFORMANCE TARGETS

	6	4	1	(5)	3	2
Engine Speed (rpm)	800	2000	1500	2000	3000	4500
Load (IMEPg) (bar)	2.0	2.6	5.0	10.0	16.6	17.3
Mode	(I) SI	(IIa)	(IIb-III)	(III)	(III)	(III)
BSFC Reduction (%)	5% ¹	20%	15%	20%	18%	17%

- Cold-Start (I) SI Mode ©
 - Retain Spark device for cold-starts.
- Low-Loads (IIa) SA-LTC Mode
 - Hot residuals to promote ignition.
- Medium Loads: (IIb-III) GCI mode ① ⑤
 - Lean PPCI, multiple DI inj with high EGR.
- High Loads: (III) GCI

- 3 2
- Late DI MCCI with medium EGR
- Fuel Cut-Off: FCO

Output Targets:

Power: 150hP @4500rpm, 15bar BMEP Eco: 15-20% reduction over baseline

Pressure Rise: < 8 bar/deg

EO Smoke < 1FSN (assuming GPF used) EO NOx < 5/gkWhr (assuming SCR used)

COMBUSTION MODES

Spherical flame front

Propagates outward from spark source

Homogenous mixture

Multiple auto-ignition source

kinetics and residuals

Rapid pressure rise rate

Central Rich partially premixed fuel-air mixture

Multiple auto-ignition sources

Modulated heat release.

Stratified diffusion flame jet Mixing controlled CI

Spray break-up, mixture form ation, and CI mixture surround ing

FUEL ECONOMY BENCHMARKING

REFERENCES: MIXING CONTROLLED COMPRESSION IGNITION

12.4 L I6 Heavy Duty Diesel Pcyls and HRR for diesel and E85 gasoline bas eline and peak BTE conditions of EEE gasoline.

Cylinders	6
CR	17
rpm	1050
IMEP [bar]	14
P Intake [bar]	2.3
EGR %	0

Injection Strategies						
SOI (°CA ATDC)	EEE	EEE PF I/DI	E85			
Main	-16	-12	-6			
PFI	-	-550	-550			
Pilot	-27	-	-27.5			
Post	4	-	-			

Wang B, Pamminger M, Wallner T. Optimizing Thermal Efficiency of a Multi-Cylinder Heavy Duty Engine with E85 Gasoline Compression Ignition. SAE Technical Paper; 2019.

2.5 L SCTE GCI Engine Test
Premixed fuel: direct-injection during valve overlap period (350 dBTDC)

Cylinders	1
CR	16.4
rpm	1200
IMEP [bar]	20
P Intake [bar]	2.85
EGR %	0

Single injection, near top dead center

20 bar BMEP

MOTOR GROUP

Paz J, Staaden D, Kokjohn S. Gasoline compression ignition operation of a heavy-duty engine at high load. SAE Technical Paper; 2018.

1750rpm 12 bar BMEP - Delphi Gen 3 GDCI vs Hyundai Benchmarking

ADVANCED ENGINE CONTROLS

Actuator / Sensor	Status	
Pedal Control		Pedal→Torque request achieved
Crank/Cam Position Sensor		Crank/Cam synchronicity achieved
Mass Airflow Sensor		MAF reads data, integration next
Air Control Valve		Actuation possible
Variable Swirl Valve		Model & calibration integration needed
Manifold Absolute Pressure		Setpoint & feedback control achieved
Fuel Rail Pressure		Fuel pressure control achieved
Fuel Metering Valve		FMV control achieved
PFI & DI Injectors		SOI & quantity control achieved
E-Variable Geometry Turbo		Boost pressure control achieved
EGR Valve		EGR manual control achieved

DIRECT INJECTOR SPRAY CHARACTERIZATION

Non-reacting & reacting conditions

- Fuel reactivity (RON 63-90)
- o Injection pressure (200-1000bar)
- o Charge density (2-40 kg/m3)
- Charge temperature (400-1200K)
- o EGR (10%-35%)

Spray characteristics

- Liquid/vapor penetration
- Cone angle
- o Ignition delay
- o Heat release rate, etc.

- CFD Model setup for CV Chamber
- Ready for DI injector to be delivered and start spray experiments

PROJECT TEAM

Acknowledgements
Sara Shaw-Legal
Lisa Lewis-Admin

